Study of Kovats Retention Indices of Polybrominated Diphenyl Ethers

As Presented at the Poster Session at the BFR 2004 Conference.

Richard P. Kozloski, Anke Gelbin, Russ Cooper
AccuStandard, Inc. 125 Market Street New Haven, CT 06513 USA

Introduction

Polybrominated diphenyl ethers (PBDEs) found in flame retardants are coming under increasing environmental scrutiny. They are gaining attention similar to that of polychlorinated biphenyls (PCBs) from several decades ago. PBDEs raise similar carcinogenic and toxicity concerns and are less well understood than their PCB analogues. Some PBDEs resist degradation and concentrate in adipose tissue, affecting endocrine and hepatic functions ${ }^{1}$. This paper will describe an effort to chromatograph and measure the retention time of over 130 different PBDE congeners in order to obtain their Kovats retention indices and thereby predict absolute and relative retention data for those PBDE congeners not yet commercially available to the scientific community.

Methods and Materials

Analysis of PBDE congeners was performed by injecting $2 \mu \mathrm{~L}$ of 100 ppm solutions in isooctane. Chromatography was effected using an HP 5890 Series II Gas Chromatograph equipped with a $30 \mathrm{M} \times 0.53 \mu \mathrm{M}$ DB-5 (5% phenyl 95% methyl silicone) capillary column fitted to a flame ionization detector. Injector, detector, and oven temperatures were chosen for sufficient volatilization of the analyte while maintaining gaussian peak shape and optimal resolution. The absolute retention times of over 130 PBDEs were obtained using the conditions described above and compared to the retention times of octachloronaphthalene and the n-alkanes which elute over the range of the PBDEs. Kovats retention indices were determined for each PBDE peak from the interpolation of n-alkane retention times in the linear temperature programming region of the chromatograms. The Kovats indices were used to determine absolute retention times for as many unavailable PBDE congeners as possible. Retention data was recorded and presented in tabular form (see Table 1).

Results and Discussion

The contribution of each phenyl ring to the Kovats retention indices of the PBDEs was determined by taking half the Kovats retention indices of a subset of the symmetrical ethers. These values were then applied to asymmetrical PBDEs to obtain data for phenyl rings with other substitution patterns. The data was checked for internal consistency by calculating the contribution of each type of ring pattern from a variety of different ethers and appropriate adjustments were made to the values of the contributing ring indices. These values were then used to calculate the Kovats retention indices of unavailable
ethers within the linear programming range of the GC runs. PBDEs with 2,3,5; 2,3,6 and 2,3,5,6 ring distribution patterns were not included because of the lack of availability of PBDEs having these substitution patterns. The summation of Kovats retention indices in this manner has been used successfully in predicting the retention times (RT) of PCB congeners ${ }^{2}$. However, the Kovats indices of PCBs which are highly chlorinated in the ortho positions are temperature dependent due to the sterically hindered rotation of the rings. With the bridging oxygen in the PBDEs, it was expected that the ring steric hindrance could be overcome despite the presence of bromine substituents. PBDEs containing only mono and dibrominated phenyl groups had a fair degree of predictability except for some instances where there were three or more ortho bromines. Surprisingly, ethers having an unsubstituted ring showed only moderately predictable Kovats indices. This may have been due to the relatively high electron density of the pi electrons interacting with the bromine atoms on the adjacent phenyl ring. All of the PBDEs containing a tribrominated ring tended to have retention times that were difficult to predict with the exception of those with a 2,4,5 ring. Compounds with a 2,3,4,5 brominated ring had fair RT predictability and those with 2,3,4,6 and 2,3,4,5,6 substitution had poor RT predictability. A consequence of the steric hindrance in the rotation of the rings of PBDE congeners is that the relative retention times can shift as a function of temperature. Changes in analysis conditions can potentially result in the reversal of the elution order of closely spaced peaks, rendering the PBDE identification suspect.

Conclusions

The precedence of using Kovats indices for successfully predicting analytical retention times and thereby the identities of many PCB congeners had led us to expect similar success with PBDEs. Having synthesized over half of all 209 PBDE congeners it was hoped, by using Kovats retention index data, that we would be able to predict with a high degree of accuracy where we would expect to find the unavailable congeners in a temperature programmed gas chromatographic analysis. Such was not always the case. This study has demonstrated that without a diverse range of PBDE congeners with different substitution patterns, retention data and therefore the identity of the unavailable PBDEs is difficult to establish.

References

1. Renner, R.; Increasing levels of flame retardants found in North American environment Environ. Sci. Technol. A-pages; 2000; 34(21), 452 A-453 A.
2. Kozloski, R.P.; J.Chromatogr. 1985, 318, 211-219

BDE \#	Obser RT	$\begin{gathered} \text { Calcul } \\ \text { RT } \end{gathered}$	RRT	Diff	BDE \#	Obser RT	$\begin{gathered} \text { Calcul } \\ \text { RT } \end{gathered}$	RRT	Diff	BDE \#	Obse RT	$\begin{gathered} \text { Calcul } \\ \text { RT } \end{gathered}$	RRT	Diff	BDE \#	Obse RT	Calcu RT	RRT	Diff	BDE \#	Obse RT	Calcu RT	RRT	Diff
001	11.73	11.53	0.433	-0.20	043					085	27.75	27.56	1.025	-0.19	127	26.98	26.88	0.996	-0.10	169		30.48		
002	11.94	11.73	0.441	-0.21	044		23.56			086	27.24	27.34	1.006	0.10	128	31.67	31.18	1.170	-0.49	170				
003	12.20	12.18	0.450	-0.02	045					087	27.16	27.17	1.004	0.01	129		30.62			171				
004	15.99	15.88	0.590	-0.10	046	23.24	23.18	0.858	-0.06	088	26.38	26.51	0.975	0.13	130					172				
005	16.64	16.75	0.614	0.11	047	23.63	23.45	0.872	-0.18	089		26.84			131	29.83	29.85	1.101	0.03	173	33.36		1.232	
006	16.13	16.06	0.596	-0.07	048	23.20	23.23	0.857	0.04	090					132					174				
007	15.97	16.06	0.589	0.09	049	23.07	23.01	0.852	-0.06	091					133					175				
008	16.41	16.45	0.606	0.04	050	22.44	22.32	0.829	-0.12	092					134					176				
009	15.66	15.50	0.578	-0.16	051	22.97	22.63	0.848	-0.34	093					135					177				
010	15.13	15.01	0.558	-0.12	052		22.56			094					136					178				
011	16.34	16.24	0.603	-0.10	053	22.20	22.18	0.820	-0.02	095					137	30.55	30.18	1.128	-0.37	179				
012	16.64	16.74	0.614	0.10	054		21.78			096					138	30.42	30.21	1.123	-0.21	180				
013	16.66	16.64	0.615	-0.02	055	24.39	24.61	0.901	0.22	097	27.07	26.96	1.000	-0.11	139	29.64	29.41	1.095	-0.23	181	33.16		1.225	
014	15.81	15.64	0.583	-0.17	056		24.54			098	26.13	26.13	0.965	0.00	140	30.04	29.46	1.109		182	31.98		1.181	
015	16.99	17.02	0.627	0.03	057					099	26.55	26.47	0.981	-0.08	141	29.77	29.82	1.100	0.05	183				
016	20.41	20.49	0.753	0.08	058	23.81	23.67	0.880	-0.14	100	25.91	25.62	0.957	-0.29	142	30.11	29.89	1.113	-0.22	184				
017	19.95	19.90	0.736	-0.05	059					101	26.00	26.06	0.961	0.06	143		29.51			185	32.12		1.186	
018	19.47	19.40	0.718	-0.07	060		24.90			102	25.72	25.70	0.950	-0.02	144	28.69	29.04	1.060	0.35	186				
019	19.26	18.95	0.711	-0.31	061		24.37			103	25.05	25.21	0.926	0.16	145		28.73			187				
020	20.69	20.65	0.763	-0.04	062	22.89	23.42	0.846	0.53	104	25.09	24.86	0.927	-0.23	146					188				
021	21.04	21.16	0.776	0.12	063					105	28.15	27.56	1.040	-0.59	147					189				
022	21.04	20.98	0.777	-0.06	064					106	27.34	27.47	1.010	0.13	148					190	33.36		1.232	
023					065					107					149					191	32.45		1.198	
024					066	24.04	24.00	0.888	-0.04	108	27.15	27.27	1.003	0.12	150					192	32.19		1.189	
025	19.97	20.05	0.737	0.08	067	23.33	23.38	0.862	0.05	109	26.21	26.64	0.968	0.43	151					193				
026	19.61	19.57	0.724	-0.04	068	23.06	23.12	0.852	0.06	110					152					194				
027	19.13	19.12	0.706	-0.01	069	22.28	22.46	0.823	0.19	111					153	29.24	29.19	1.080	-0.04	195				
028	20.39	20.39	0.753	0.00	070		22.67			112					154	28.37	28.44	1.048	0.07	196				
029	19.71	19.81	0.728	0.10	071	23.22	23.18	0.858	-0.04	113					155	27.97	27.65	1.033	-0.32	197				
030	18.61	18.76	0.687	0.15	072	22.66	22.67	0.837	0.01	114	27.84	27.74	1.029	-0.10	156	30.87	30.62	1.141	-0.25	198	35.56		1.314	
031	20.02	19.91	0.739	-0.11	073	22.24	22.29	0.822	0.05	115	26.81	26.91	0.991	0.10	157		30.83			199				
032	19.62	19.49	0.724	-0.13	074	23.78	23.69	0.878	-0.08	116	26.89	27.15	0.993	0.26	158	29.83	29.85	1.102	0.02	200				
033	20.40	20.49	0.753	0.09	075	22.96	22.78	0.848	-0.18	117					159	29.85	29.91	1.103	0.06	201				
034	19.48	19.53	0.719	0.05	076	23.86	24.02	0.881	0.16	118	27.08	26.95	1.000	-0.13	160	30.09	30.01	1.111	-0.08	202				
035	20.67	20.64	0.763	-0.03	077	24.71	24.54	0.913	-0.17	119	26.13	26.13	0.965	0.00	161		29.14			203				
036	19.80	19.69	0.731	-0.11	078	24.17	24.17	0.893	0.00	120	26.08	26.16	0.963	0.08	162					204				
037	21.04	20.98	0.777	-0.06	079	23.80	23.67	0.879	-0.13	121	25.10	25.31	0.927	0.21	163					205				
038	20.03	19.81	0.740	-0.22	080	22.88	22.78	0.846	-0.10	122		27.64			164					206	42.54		1.571	
039	20.18	20.03	0.745	-0.15	081	24.56	24.48	0.908	-0.08	123	27.20	27.17	1.004	-0.03	165					207				
040	24.73	24.54	0.913	-0.19	082		28.04			124	26.76	26.78	0.988	0.02	166					208				
041	24.44	24.47	0.903	0.03	083					125	26.52	26.44	0.979	-0.08	167	30.09	29.84	1.111	-0.25	209				
042	24.05	24.00	0.888	-0.05	084					126	27.91	27.64	1.031	-0.27	168	29.19	29.10	1.078	-0.10					

Table 1: Retention times and relative retention times (to octachloronaphthalene) of PBDEs

